Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Webkdd 2002 - Mining Web ­Data for Discovering Usage ­Patterns and Profiles
4th International Workshop, Edmonton, Canada, July 23, 2002, Revised Papers (Lecture Notes in Computer Science / Lecture Notes in Artificial Intelligence)
By Osmar R. Zaiane (Edited by), Jaideep Srivastava (Edited by), Myra Spiliopoulou, Brij Masand (Edited by)

Rating
Format
Paperback, 183 pages
Published
Germany, 1 October 2003

1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.


Our Price
$92.99
Ships from UK Estimated delivery date: 15th Apr - 22nd Apr from UK
Free Shipping Worldwide

Buy Together
+
Buy Together
$187.33

Product Description

1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.

Product Details
EAN
9783540203049
ISBN
3540203044
Age Range
Other Information
Illustrated
Dimensions
23.4 x 15.6 x 1.1 centimeters (0.63 kg)

Promotional Information

Springer Book Archives

Table of Contents

LumberJack: Intelligent Discovery and Analysis of Web User Traffic Composition.- Mining eBay: Bidding Strategies and Shill Detection.- Automatic Categorization of Web Pages and User Clustering with Mixtures of Hidden Markov Models.- Web Usage Mining by Means of Multidimensional Sequence Alignment Methods.- A Customizable Behavior Model for Temporal Prediction of Web User Sequences.- Coping with Sparsity in a Recommender System.- On the Use of Constrained Associations for Web Log Mining.- Mining WWW Access Sequence by Matrix Clustering.- Comparing Two Recommender Algorithms with the Help of Recommendations by Peers.- The Impact of Site Structure and User Environment on Session Reconstruction in Web Usage Analysis.

Show more
Review this Product
Ask a Question About this Product More...
 
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top